Pelle à Vapeur
ou Excavateur Mécanique

L'EXCAVATION du sol constitue une des parties principales de tous les travaux importants de construction. Elle est nécessaire non seulement par les entreprises telles que le percement des tunnels, le creusement des canaux et des citernes, mais aussi par le creusement des fondations qui sont indispensables pour toutes les grandes constructions. Auparavant, à l'époque où les puissantes machines modernes étaient encore inconnues, ces travaux d'excavation s'effectuaient par des ouvriers et nécessitaient l'emploi de très fortes équipes. Cet état de choses dura...
longtemps et ne prit fin qu'à l'époque assez récente de l'invention des grands excavateurs mécaniques. À l'heure actuelle, la situation est considérablement différente, et toutes les grandes entreprises, tout en employant des nombres très considérables d'ouvriers, se servent de machines pour la plus grande partie du travail. La pelle maniée à la main n'a pas complètement disparu et continue à jouer un rôle important, mais pour le gros des travaux de creusement elle cède de plus en plus sa place à des machines géantes actionnées par la vapeur ou l'électricité et dont chacune peut exécuter le travail de centaines d'hommes.

**Un Excavateur à Vapeur Typique**

L'Excavateur à Vapeur ou Pelle à Vapeur représente le type le plus répandu des machines excavatrices. Cette machine consiste en une énorme pelle montée à l'extrémité d'un puissant bras en acier muni de crémaillères et commandée par des roues d'engrenage actionnées par des machines à vapeur montées sur le bâti de l'excavateur. Ce mécanisme permet de modifier la portée de la pelle et le rayon d'action. Comme dans les grues, un câble d'acier passe par-dessus une poulie à la tête de la flèche et est enroulé sur le tambour d'un treuil. Aussitôt embrayé, le treuil enroule le câble qui relève la pelle en lui faisant décrire un arc autour du point où le bras pivote sur la flèche. Ces mouvements combinés au pivotement de la superstructure permettent de creuser une grande surface sans déplacer l'excavateur.

Le bord de devant de la pelle est tranchant et dentelé. Les dents sont faîtes en acier le plus dur et s'enfoncent avec force dans le sol. Dans la plupart des excavateurs, la flèche est attachée à un bâti pivotant qui contient la chaudière, le moteur et tous les mécanismes. L'ensemble de la superstructure pivotante est monté sur un chariot qui roule sur des rails, les roues motrices étant actionnées par la machine à vapeur principale.

**Les Perfectionnements des Excavateurs Modernes**

Les dernières années ont apporté des perfectionnements considérables dans la construction des excavateurs mécaniques. Les premières machines de ce genre ne pouvaient faire qu'un peu plus d'un demi tour, mais les excavateurs modernes accomplissent des tours entiers sur leur bâti.

Ces machines se font en plusieurs dimensions qui s'emploient selon le rendement exigé dans tel ou tel cas particulier et selon la nature du terrain à creuser. Par exemple, une machine de 4 à 6 tonnes peut être employée pour l'excavation d'un sol léger terreux ou argileux. Le creusement des argiles plus lourds nécessite l'emploi d'excavateurs faisant de 10 à 20 tonnes et même plus pour les calcaires et les minéraux. Le rendement d'un excavateur dépend principalement des dimensions de la pelle qui, aussi, varient selon le terrain à creuser. Généralement, pour obtenir le meilleur rendement d'une machine de 6 tonnes, on la munit d'une pelle d'une capacité de 0,8 mètres cubes. La pelle d'une machine de 12 tonnes contient à peu près le double, tandis que la capacité de la pelle d'un excavateur de 20 tonnes est généralement de 2 à 3 mètres cubes.

Il arrive parfois au cours des travaux d'excavation que la machine doit traverser des terrains marécageux ou rocheux et accidentés, ce qui présente des difficultés considérables qu'on ne peut surmonter pendant longtemps. Ce n'est que récemment qu'on a commencé à munir les excavateurs de chenilles, ou "caterpillars" leur permettant de se déplacer sur les terrains autrement impraticables. Quatre roues dentées, dont deux motrices, sont fixées aux essieux. La tension de la chaîne sans fin peut être réglée par le déplacement de l'essieu des roues non-motrices. Entre les roues dentées, des deux côtés de la machine, sont disposés des rouleaux destinés à supporter la chaîne et montés sur un châssis spécial de façon à ce qu'on puisse démonter chaque rouleau séparément sans soulever la machine entière. Les roues dentées peuvent, elles aussi, être démontées facilement.

La chaîne de la chenille consiste en plaques de fonte massive recouvertes d'acier doux incassable. Chaque chenille est commandée par un embrayage spécial, ce qui permet de les actionner indépendamment l'une de l'autre. En n'actionnant qu'une seule chenille, on peut changer de direction, ou même faire exécuter à la machine un tour complet sur elle-même.

**L'Excavateur à Vapeur de 8 Tonnes du Type “Berry”**

La Fig. 4 représente une machine de 8 tonnes "Berry" qui peut être
machine peut enfoncer les dents de la pelle avec une force de 6 tonnes. Avec une pelle de ces dimensions, la machine peut excaver aisément de 200 à 225 mètres cubes d'argile en une journée. L'un des points principaux, qu'il faut prendre en considération pour établir les dimensions et le système d'excavateur à employer pour tel ou tel travail est la distance à laquelle la machine doit déposer le matériel excavé. Il existe, par exemple, des machines qui déposent le contenu de leur pelle à une distance de 10 mètres de leur corps, et, en les munissant de fléches plus longues, on peut augmenter cette distance jusqu'à 18 mètres. Ces machines s'emploient pour l'extraction du minerai situé sous une couche superficielle de terre, et creusent généralement la terre ou l'argile à raison de 18 à 36 mètres cubes par heure. La profondeur à laquelle la machine creuse dépend aussi de son rayon d'action. Les machines à flèches allongées ont le plus d'intérêt pour creuser le sol à une profondeur de 4 à 6 mètres et déposer le contenu de leur pelle à une distance de 18 mètres. En se servant de flèches encore plus longues, on peut exécuter le travail à une plus grande profondeur.
Si le matériel à excaver est plus lourd que la terre ou l'argile il faut employer des machines extrêmement puissantes. Certaines grandes machines modernes sont munies de pelles spéciales pour le chargement de pierres d'une capacité de 2, 6 mètres cubes. Quoique, évidemment, plus lentes dans leur travail que les machines des types plus légers, elles peuvent effectuer un cycle complet de mouvements en une minute et déblayer plus de 220 mètres carrés à l'heure en déposant leur charge sur un rayon de 30 mètres!

Fig. 3. Le Roulement à Billes. Le chemin de roulement supérieur est levé afin de faire voir les détails du dispositif.

Fig. 4. Un véritable Excavateur de 8 tonnes du type servant de prototype au modèle Meccano.
La Machinerie et ses Commandes

Après avoir pris connaissance de certains détails concernant la structure de ces excavateurs géants, il est intéressant d'étudier la partie mécanique de ces machines et leur fonctionnement.

Au début du travail, la pelle pend dans une position verticale, ses dents reposant sur le sol, devant le matériel à excaver. Le mécanicien met en marche les machines et engage l'embrayage de levage. Aussitôt, la pelle est tirée en avant et en l'air contre le matériel. En même temps, elle est poussée par les crémaillères du bras en avant de façon à s'enfoncer à la profondeur voulue.

Une main sur le levier de commande des machines principales, l'autre sur le levier des machines des crémaillères, le mécanicien est à même de régler la profondeur du déblayage de façon à enlever une couche égale à chaque coup. De cette façon il s'assure que la pelle est complètement remplie lorsque le mouvement est terminé. À ce moment, il dégage l'embrayage de levage, tandis que la pelle est ramenée vers la machine en étant retenue par le frein du treuil.

Le Fonctionnement Rapide

Ensuite, le mécanisme de pivotement est actionné, et la pelle est amenée au-dessus du wagon ou de l'endroit où la terre doit être déposée. Quand elle est arrêtée au point voulu, le mécanicien tire une corde qui déclanche un cliquet au fond de la pelle et laisse s'échapper son contenu.

Le pivotement de l'appareil s'effectue alors dans le sens contraire et la pelle revient à sa première position pour s'enfoncer de nouveau dans le sol. On abaisse la pelle en relâchant le tambour libre sur son axe qui est contrôle par un frein à pédale.

Tous ces mouvements s'effectuent presque en autant de temps que nécessaire leur description, leur durée dépendant des dimensions de l'engin et de la longueur de la flèche. La rapidité du fonctionnement des excavateurs modernes peut être illustrée par l'exemple suivant : un excavateur à vapeur capable de creuser environ 110 mètres cubes de terre ou d'argile ou bien de 15 à 25 mètres cubes de minerai de fer par heure peut accomplir le cycle entier de ses mouvements en 25-35 secondes !

Construction du Modèle Meccano

Ce superbe modèle reproduit toutes les fonctions propres à la machine véritable. En suivant attentivement les instructions ci-dessous, on ne rencontrera aucunes difficultés dans sa construction.

Il faudra faire bien attention en construisant le modèle à ce que tous les mécanismes et les tringles fonctionnent librement, de manière à assurer un bon travail. La charpente de la superstructure est représentée sur la Fig. 2, et c'est par elle qu'on doit commencer.

L'illustration nous indique très clairement la méthode de la construction. Les parties latérales 1 et 1a sont des Cornières de 32 cm.; 3—deux Cornières de 19 cm., reliées par deux Bandes croisées de 14 cm.; 4—deux Cornières de 11 cm. ½; 5—une Plaque de 11 ½ x 6 cm.; 6—deux Plaques de 6 x 6 cm.; 7—une autre Cornière de 11 ½ cm.; 8—une Cornière de 9 cm.; 9 est une Plaque de 6 x 6 cm. qui est fixée à la Cornière 1a par deux Equerres Renversées 10.

A une Cornière de 6 cm. 11 est fixée une Bande de 5 cm. à l'extrémité de laquelle est boulonnée une Bande incurvée. Cette dernière sert de secteur au levier 15 (Fig. 1). Le disque supérieur d'un Roulement à Billes 16 (Fig. 2) est fixé à la Plaque 5. La Bande de 71 cm. 111 et une Bande à Double Courbure de 60 x 12 mm. 42 sont fixées par les mêmes boulons à la Plaque 6. La construction du bâti terminée, on passe au châssis du modèle (Fig. 5). Quatre Cornières de 19 cm. 17 et 17a sont fixées à deux Cornières de 11 ½ cm. 18, tandis que deux Poutrelles Plates de 19 cm. 19 sont boulonnées aux Cornières 17a. La Rohe de 133 dents 20 doit être fixée aux Cornières 17 au moyen de quatre Equerres Renversées 21, et cela avant de monter les roues locomotrices 22 en place. Une Tringle de 5 cm. 59, fonctionnant librement dans la bosse de la Rohe d'Engrenage 20, est munie d'un Engrenage Conique de 22 mm.

Le modèle roule sur les Roues à Boudin 22 dont les essieux sont passés dans les Poutrelles Plates 19, comme indiqué. La Tringle 58 est munie de deux Roues Dentées 23 reliées par une Chaîne Galle à deux autres Roues Dentées fixes aux axes des roues 22.

La Tringle 58 est actionnée par la Tringle 59 par l'intermédiaire
de l'Engrenage Conique 30.

La Fig. 3 représente le Roulement à Billes avec le chemin de roulement supérieur relevé et cette gravure montre clairement la disposition générale des diverses parties de cette pièce.

Avant l'assemblage du mécanisme, la charpente (Fig. 2) peut être placée sur la Tringle 59 du châssis qui passe à travers le trou central de la Plaque 5. (Fig. 2) et est fixée à sa place au moyen de l'Engrenage Conique de 38 mm. 33 (Fig. 9).

L'Assemblage du Mécanisme

La force motrice de la machine est transmise par un Pignon de 12 mm. 51 (Fig. 9) qui engrenne avec la Roue d'Engrenage de 57 dents 52 dont la Tringle porte une Roue d'Engrenage de 25 mm. 24. La Roue 24 engrenne avec une autre Roue de 25 mm. 25 sur la Tringle 26, à une extrémité de laquelle se trouve un Pignon de 19 mm. de diamètre et de 19 mm. de largeur 27 qui transmet la force motrice par la Roue de 50 dents 28 à la Tringle de changement de commande coulissante sur laquelle sont fixés le Pignon 31 et l'Engrenage Conique 30.

De cette Tringle la force motrice peut être transmise par un de des différents trains d'engrenage, et cela pour produire les mouvements suivants : le roulement du modèle, la poussée du bras excavateur et le levage de la pelle.

Chacun de ces mouvements peut être actionné au moyen du levier (Fig. 1) qui commande le coulissement de la Tringle. La disposition du levier est indiquée très clairement sur l'illustration. Le Collier 102, qui est placé entre les Colliers 101 et 105 fixés à la Tringle 29, pivote sur un Boulon qui est inséré dans son trou pour vis d'arrêt, et est fixé à une Manivelle sur la Tringle du levier 15. Par conséquent, en actionnant le levier 15, on oblige la Tringle 29 à coulisser dans le sens de sa longueur dans ses supports. Le Collier 102 est évidemment libre sur la Tringle 29, le boulon passé à travers la manivelle 103 étant visé dans le Collier de manière à permettre le blocage par un écrou, mais sans fixer le Collier à la Tringle. Ce type de levier de commande forme l'objet du Mécanisme Standard No. 78.

Le roulement du modèle est effectué en poussant le levier 15 fortement à gauche (comme indiqué sur la Fig. 9) ce qui fait engrenner les Engrenages Coniques 30 et 33. Ce mouvement dégage le Pignon 31 de la Roue de 50 dents 35.

L'Engrenage Conique 33 est monté sur une Tringle 59 (Fig. 5) sur l'extrémité inférieure de laquelle se trouve un Engrenage Conique à 26 dents engrenant avec un Engrenage 80 identique au premier qui communique le mouvement aux roues locomotives 22 par les Roues Dentées et les Chaines 23.

Le bras de l'excavateur est actionné par le levier 15. En poussant ce dernier légèrement à droite on fait engrenner le Pignon 31 avec la Roue de 57 dents 34 et on dégage les Engrenages Coniques 30 et 33. Une Roue Dentée de 19 mm. 36 fixée sur la Tringle de l'Engrenage 34 transmet la force motrice, au moyen d'une Chaine Galle 38, à la Roue Dentée 83 sur le côté du châssis de la flèche (Fig. 7). Cela a pour conséquence de lever ou baisser le bras de l'excavateur, suivant la direction de rotation de la machine.

En poussant le levier 15 à gauche et en dégageant le Pignon 31 et la Roue d'Engrenage 34, nous obtenons le troisième mouvement, le levage et le baissement de la pelle.

Le Pignon 31 (Fig. 9) engrenne à présent avec la Roue d'Engrenage 35 sur la Tringle 94 du treuil 39, et ce dernier étant mis en rotation, la pelle est levée ou abaissée au moyen de la Corde, suivant le sens dans lequel tourne le tambour.

La quatrième opération, le pivotement de la flèche, est réalisé au moyen du levier 40 qui commande les Manchons d'Embrayage 44a et 44b. La Bande formant le levier est fixée à une Tringle de 71 cm. 41 munie d'une Manivelle 43 portant une Cheville Filiée. La Tringle est passée dans une Bande Courbée de 60 × 12 mm. 42.

La Cheville Filiée de la Manivelle 43 s'engage dans la
gorge d’un Accouplement Jumelé à Douille 44 (pièce 171) à une extrémité duquel est fixé le Manchon d’Embrayage mâle 44a. La Section d’Embrayage femelle 44b est fixée sur la Tringle de la Roue d’Engrenage 52. A l’autre extrémité de l’Accouplement Jumelé à Douille se trouve une Roue d’Engrenage de 25 mm. 45, de sorte que quand les manchons sont embrayés, la force motrice est transmise de la Roue d’Engrenage 45 à une autre Roue d’Engrenage de 25 mm. 46 dont la Tringle est munie d’un Pignon de 12 mm. 47. Le Pignon 47 engrené avec un Pignon semblable de 12 mm. 48 sur la Tringle 49, cette dernière traversant les plaques latérales du bâti de la machine et étant fixée à son place au moyen d’un Collier 50. Une Vis sans Fin 53 sur la Tringle du Pignon 48 engrené avec un Pignon de 12 mm. 54 situé sur une Tringle 55 qui traverse la Bande Courbée de 60 x 12 mm. 56, ainsi que le fond du bâti de la machine.

A l’extrémité inférieure de la Tringle 55 se trouve un Pignon de 12 mm. 57 (voir Fig. 3) qui engrené avec la Roue d’Engrenage de 9 cm. 29 du Roulement à Billes. Il s’en suit que, tandis que la Tringle coulissante 26 commande la poussée du bras excavateur et les mouvements de levage et de roulement, le mécanisme de pivotement ne fonctionne que lorsque le levier 40 engage l’embrayage.

Ainsi, le pivotement peut se produire simultanément avec chacun des autres mouvements.

**Construction de la Flèche**

La construction de la Flèche est clairement indiquée sur la Fig. 6.

Elle comprend, comme pièces essentielles, deux Cornières de 32 cm. 67 reliées l’une à l’autre au moyen d’une Poutrelle Plate de 32 cm. 68 (voir aussi Fig. 1). A chaque côté de l’extrémité extérieure sont boulonnées des Bandes de 5 cm. 69 et des Plaques Triangulaires de 25 mm. 71.

Les Bandes forment des supports pour l’axe de la Poulie à l’extrémité de la flèche, tandis que les Plaques Triangulaires servent à attacher les Tringles de 20 cm. 72, munies de petites Chaves d’Accouplement (pièce No. 116a). Les autres extrémités des Tringles 72 sont munies d’Accouplements 74 au moyen desquelles elles sont attachées à la Tringle 73 (Fig. 1) de la superstructure. Il est à remarquer que les Tringles 72 sont montées librement sur la Tringle 73. La Poulie 70 à la tête de la flèche est formée de deux Roues Barillets et de deux Poulies folles de 25 mm., entre lesquelles est intercalée une Bande de 5 cm. 75 (Fig. 6). Le tout est tenu sur une Tringle de 5 cm. qui est maintenue dans la tête de la flèche au moyen des Colliers 76. L’extrémité inférieure de la flèche est articulée au bâti à l’aide de la Tringle 77 passée dans deux Equerres de 25 x 25 mm. 78 (Fig. 2) et munie à ses deux extrémités de Colliers 79 (Fig. 1 et 6).

**Le Bras Excavateur (Fig. 8)**

Le Bras Excavateur est muni de la pelle et consiste en deux Cornières de 21 cm. 81 reliées entre elles par une Poutrelle Plate de 5 cm. 85. La Pelle d’Excavateur est fixée au bras au moyen des Bandes de 6 cm. 86 placées des deux côtés. Les Cornières du bras excavateur, la Pelle et une Bande Courbée de 60 x 38 mm. 88 sont traversées des deux côtés par des Chevilles Filetées 87 munies de Colliers 89. Le Support Plat 90 est fixé à la Bande Courbée 88 par une Equerre, ces deux dernières pièces étant jointes au moyen d’un boulon à contre-croissants; le Crochet de la corde de levage s’accroche au Support Plat 90. Deux Crémallières de 16½ cm. 91
La marche de la Machine à Vapeur Meccano est commandée par le levier 61 (Fig. 1) consistant en une Manivelle fixée à la Tringle 82 et munie d’une Cheville Filetée. Cette Tringle porte également une deuxième Manivelle 63 dont le bras est allongé au moyen d’une Bande de 5 cm. Un Support de Rampe 65 pivotant dans le trou extrême de la Bande de 5 cm. est fixé à la Tringle de 20 cm. 64 dont l’extrémité opposée est connectée par un autre Support de Rampe 66 (Fig. 9) au levier 108 de la Machine à Vapeur (Fig. 10).

Instructions pour l’Emploi de la Machine à Vapeur

Avant tout on remplit d’eau la Chaudière. Pour le faire il faut dévisser la soupape de sûreté 109 et ouvrir le robinet 110 (Fig. 9). La chaudière doit être remplie d’eau jusqu’à ce qu’elle commence à couler du robinet. Ceci fait, on ferme le robinet 110 et on revisse la soupape 109. La lampe doit être remplie d’alcool à brûler et glissée à sa place sur la plaque de la Machine. Après avoir allumé la mèche il faut attendre quelques minutes pour que la Vapeur se forme. La position du réservoir à alcool en dehors du foyer élimine tout danger pouvant provenir du surchauffage de l’alcool. Une fois la provision d’alcool dans le réservoir éprouvée, il faut remplir à nouveau la chaudière d’eau et la lampe d’alcool.

On aura soin avant de mettre en marche la machine d’en graisser légèrement les rouages, les arbres, le piston et les glissières ainsi que tous les paliers du modèle, cette précaution étant indispensable pour le bon fonctionnement.

On attacher une importance particulière au choix de l’huile, car une huile ne convenant pas à cet usage se décomposerait sous l’action de la chaleur. Nous conseillons d’employer pour la lubrification de la machine et du modèle l’Huile Standard Meccano.

Liste des pièces nécessaires à la construction du modèle :—

<table>
<thead>
<tr>
<th>2 du No.</th>
<th>1 du No.</th>
<th>9b</th>
<th>1 du No.</th>
<th>16a</th>
<th>1 du No.</th>
<th>25</th>
<th>4 du No.</th>
<th>31</th>
<th>2 du No.</th>
<th>48a</th>
<th>1 du No.</th>
<th>95a</th>
<th>2 du No.</th>
<th>116a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>16b</td>
<td>1</td>
<td>25a</td>
<td>1</td>
<td>32</td>
<td>1</td>
<td>53a</td>
<td>4</td>
<td>96</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>96a</td>
<td>2</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>103b</td>
<td>1</td>
<td>144</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>12a</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>103g</td>
<td>1</td>
<td>152</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>13a</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>103a</td>
<td>1</td>
<td>163</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>14a</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>110a</td>
<td>1</td>
<td>168a</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>3</td>
<td>15a</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>111a</td>
<td>1</td>
<td>168c</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>16a</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>115</td>
<td>1</td>
<td>169</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>24</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>125</td>
<td>37</td>
<td>24</td>
<td>59</td>
<td>1</td>
<td>171</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
LES SUPER-MODELES MECCANO

Nos spécialistes ont établi une série de super-modèles Meccano qui dépassent tout ce qui a été construit avec Meccano à ce jour. Ce modèle est si important que nous avons confié la description à des ingénieurs et que des feuilles spécialisées, énumérées ci-dessous, ont été établies pour chacun d'eux. Vous pouvez obtenir ces brochures chez votre dépositaire ou en nous écrivant : MECCANO (FRANCE), 78-80, r. Réveil, PARIS-XIX.

Un choix de ces brochures est représenté sur cette page.

No. 1 Châssis Automobile Meccano. Ce modèle est très bien établi et est largement utilisé dans les écoles techniques. Il est conçu pour des élèves de toutes les âges. Prix de la brochure Frs. 1.50.

No. 2 Chargeur à Charbon à Grande Vitesse. Ce modèle reproduit tous les mouvements d'un véritable charbonnier. Prix de la brochure Frs. 1.50.

No. 3 Motocyclette et Sidecar. Ce modèle est muni de lampe de phare, de clignotant, de vilain, etc. Prix de la brochure Frs. 1.00.

No. 4 Grue géante pour soulever les Blocs de Ciment. Splendide modèle, représentant une des plus puissantes machines, en usage pour la construction. Prix de la brochure Frs. 1.00.

No. 5 Dredger à Pied Rigidé. Ce modèle est conçu pour des vêtements de chaînes. Prix de la brochure Frs. 1.00.

No. 7 Balance à Plate-Forme Meccano. Ce modèle est un modèle exact de la machine à plate-forme. Prix de la brochure Frs. 1.00.

No. 8 Manège Meccano. Avec plate-forme et structure en bois, ce modèle est conçu pour les enfants. Prix de la brochure Frs. 1.00.

No. 9 Table Bagatelle Meccano. Table de jeu qui procure des heures d'amusement à ses constructeurs. Prix de la brochure Frs. 1.00.

No. 10 Scie à Billets. La scie de ce modèle est animée d'un mouvement rapide de va-et-vient, tandis que la table passe de l'avant vers la scie. Prix de la brochure Frs. 1.00.

No. 11 Machine à Vapeur Horizontale. Modèle muni d'un foyer et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 12 Machine à Scier la Pierre. En manœuvrant ce modèle d'une main seule, on peut le manœuvrer seul. Prix de la brochure Frs. 1.00.

No. 13 Meccanografe. On peut faire avec cet appareil des centaines de magnifiques dessins. Prix de la brochure Frs. 1.00.


No. 15 Locomotive Réservoir. Les roues motrices sont actionnées par un Moteur électrique. Prix de la brochure Frs. 1.50.

No. 16 Métier à Tisser. Modèle merveilleux qui est en parfait accord avec les exigences de la réalité. Prix de la brochure Frs. 1.50.

No. 17 Robinetterie. Excluent modèle et utilisation à marche arrière. Prix de la brochure Frs. 1.00.

No. 18 Grue Pivotante. Ce modèle est muni d'un engrenage de levage, simple, mais puissant. On peut faire des expériences très intéressantes en adaptant ce modèle à un moteur électrique. Prix de la brochure Frs. 1.00.

No. 19 Scie en Vapeur. Ce modèle est muni d'un engrenage de levage, simple, mais puissant. On peut faire des expériences très intéressantes en adaptant ce modèle à un moteur électrique. Prix de la brochure Frs. 1.00.

No. 20 Grue Mobile Electrique. Modèle muni de circuits et de la commande. Prix de la brochure Frs. 1.50.

No. 21 Pont Transbordeur. Ce modèle est muni d'un pont et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 22 Tracteur. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 23 Scie à Billets Vertical. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 24 Ponceuse. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 25 Grue Hydraulique. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 26 Harmonographe Ellipsoïde. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.00.

No. 27 Dragee Excavatrice Géante. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 28 Grue à Ponton. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 29 Grue à Flèche Horizontale. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 30 Grue de Dépannage pour Chemin de Fer. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 31 Entrepôt avec Moteur-chargeur Electrique. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 32 Machine à Vapeur à Deux Cylindres avec Chauffage. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 33 Gravures Rouges Simple et Double. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 34 Hélice à Deux Moteurs. Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.50.

No. 36 Grue Electricité (Type Écossais). Modèle est muni d'une chaudière et d'une chaudière. Prix de la brochure Frs. 1.00.